jueves, 5 de diciembre de 2013

Ecuaciones cuadráticas por factorización♥

1er. Caso: Factorización por factor común

Los pasos a seguir para este primer caso, son:

1.- Sacar el M.C.D. (Máximo común divisor) de los números, el cual representará el factor común de los números.

2.- Determinar el factor común de las literales tomando la que tiene menor exponente y que se encuentra en todos los términos.

3.- Seguidamente dividir cada uno de los términos entre el factor común.

4.- Una vez realizada la factorización, hay que igualar cada factor a CERO.

5.- Luego se necesita despejar y resolver como una ecuación lineal.

6.- Por último, realizar las comprobaciones con la ecuación original. 





HALLAR EL FACTOR COMÚN:


Sacar factor común a un polinomio consiste en aplicar lapropiedad distributiva.
a · x + b · x + c · x = x (a + b + c)
Una raíz del polinomio será siempre x = 0
x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = − 1 

 SOLUCIÓN POR FACTORIZACIÓN:


El método para solucionar ecuaciones de segundo grado por medio de la factorización es un poco complicado pero con algo de práctica se puede obtener cierta habilidad, este método se basa en que el producto de dos o más factores es cero, si cualquiera de los factores es cero.

 Como  toda ecuación  cuadrática es  equivalente a  una ecuación  en la cual uno  de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, se procede así: 
Si  entonces,  la  ecuación   es equivalente a:(1). 
La  ecuación (1)  puede resolverse usando la  propiedad del sistema de los números reales: 

 'Factorización'                                                            'Factorización'





Encontrar los factores de una ecuación es uno de los conceptos más importantes en álgebra básica, ya que tiene muchas aplicaciones en la resolución de problemas y al trabajar con ecuaciones y sistemas de ecuaciones. 

* Los factores de una ecuación algebraica son análogos a los factores primos de un número compuesto; se combinan a través de la multiplicación para formar el polinomio original y que no se pueden dividir más que eso.

* Encontrar los factores de una ecuación permite encontrar las raíces de la ecuación (los valores de x que hacen que la ecuación sea igual a cero).

http://www.youtube.com/watch?v=kbQwYQ5Myws
http://www.youtube.com/watch?v=CC5UjQ_aVAU
http://www.slideshare.net/evera1031/resolvamos-ecuaciones-cuadrticas-por-factorizacin

Al principio de este tema fue algo que en realidad no lograba entender, se me hizo (más que los otros casos) complicado, trataba de entenderlo y no podía, pero con los ejercicios que mi maestra nos ponía fue cuando todo lo fui entendiendo y comprendiendo, comencé a resolverlo y ví que lograba terminarlo. Al momento de querer aclarar mis dudas, por pensar que eran tan tontas nunca lo hice, fue por eso que no le entendí hasta después. En lo personal fue complicado pero con la práctica y siguiendo los pasos, logras un resultado bastante bien.









No hay comentarios:

Publicar un comentario